3.11.37 \(\int \frac {\sqrt {c d^2+2 c d e x+c e^2 x^2}}{(d+e x)^5} \, dx\) [1037]

Optimal. Leaf size=34 \[ -\frac {c^2}{3 e \left (c d^2+2 c d e x+c e^2 x^2\right )^{3/2}} \]

[Out]

-1/3*c^2/e/(c*e^2*x^2+2*c*d*e*x+c*d^2)^(3/2)

________________________________________________________________________________________

Rubi [A]
time = 0.02, antiderivative size = 34, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 32, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.062, Rules used = {657, 643} \begin {gather*} -\frac {c^2}{3 e \left (c d^2+2 c d e x+c e^2 x^2\right )^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[c*d^2 + 2*c*d*e*x + c*e^2*x^2]/(d + e*x)^5,x]

[Out]

-1/3*c^2/(e*(c*d^2 + 2*c*d*e*x + c*e^2*x^2)^(3/2))

Rule 643

Int[((d_) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[d*((a + b*x + c*x^2)^(p +
 1)/(b*(p + 1))), x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[2*c*d - b*e, 0] && NeQ[p, -1]

Rule 657

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[e^(m - 1)/c^((m - 1)/2
), Int[(d + e*x)*(a + b*x + c*x^2)^(p + (m - 1)/2), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[b^2 - 4*a*c,
 0] &&  !IntegerQ[p] && EqQ[2*c*d - b*e, 0] && IntegerQ[(m - 1)/2]

Rubi steps

\begin {align*} \int \frac {\sqrt {c d^2+2 c d e x+c e^2 x^2}}{(d+e x)^5} \, dx &=c^3 \int \frac {d+e x}{\left (c d^2+2 c d e x+c e^2 x^2\right )^{5/2}} \, dx\\ &=-\frac {c^2}{3 e \left (c d^2+2 c d e x+c e^2 x^2\right )^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.01, size = 27, normalized size = 0.79 \begin {gather*} -\frac {\sqrt {c (d+e x)^2}}{3 e (d+e x)^4} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[c*d^2 + 2*c*d*e*x + c*e^2*x^2]/(d + e*x)^5,x]

[Out]

-1/3*Sqrt[c*(d + e*x)^2]/(e*(d + e*x)^4)

________________________________________________________________________________________

Maple [A]
time = 0.54, size = 35, normalized size = 1.03

method result size
risch \(-\frac {\sqrt {\left (e x +d \right )^{2} c}}{3 \left (e x +d \right )^{4} e}\) \(24\)
gosper \(-\frac {\sqrt {x^{2} c \,e^{2}+2 c d e x +c \,d^{2}}}{3 \left (e x +d \right )^{4} e}\) \(35\)
default \(-\frac {\sqrt {x^{2} c \,e^{2}+2 c d e x +c \,d^{2}}}{3 \left (e x +d \right )^{4} e}\) \(35\)
trager \(\frac {\left (e^{2} x^{2}+3 d x e +3 d^{2}\right ) x \sqrt {x^{2} c \,e^{2}+2 c d e x +c \,d^{2}}}{3 d^{3} \left (e x +d \right )^{4}}\) \(54\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*e^2*x^2+2*c*d*e*x+c*d^2)^(1/2)/(e*x+d)^5,x,method=_RETURNVERBOSE)

[Out]

-1/3/(e*x+d)^4/e*(c*e^2*x^2+2*c*d*e*x+c*d^2)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*e^2*x^2+2*c*d*e*x+c*d^2)^(1/2)/(e*x+d)^5,x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: Error executing code in Maxima: expt: undefined: 0 to a negative e
xponent.

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 65 vs. \(2 (29) = 58\).
time = 3.91, size = 65, normalized size = 1.91 \begin {gather*} -\frac {\sqrt {c x^{2} e^{2} + 2 \, c d x e + c d^{2}}}{3 \, {\left (x^{4} e^{5} + 4 \, d x^{3} e^{4} + 6 \, d^{2} x^{2} e^{3} + 4 \, d^{3} x e^{2} + d^{4} e\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*e^2*x^2+2*c*d*e*x+c*d^2)^(1/2)/(e*x+d)^5,x, algorithm="fricas")

[Out]

-1/3*sqrt(c*x^2*e^2 + 2*c*d*x*e + c*d^2)/(x^4*e^5 + 4*d*x^3*e^4 + 6*d^2*x^2*e^3 + 4*d^3*x*e^2 + d^4*e)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {c \left (d + e x\right )^{2}}}{\left (d + e x\right )^{5}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*e**2*x**2+2*c*d*e*x+c*d**2)**(1/2)/(e*x+d)**5,x)

[Out]

Integral(sqrt(c*(d + e*x)**2)/(d + e*x)**5, x)

________________________________________________________________________________________

Giac [A]
time = 1.48, size = 22, normalized size = 0.65 \begin {gather*} -\frac {\sqrt {c} e^{\left (-1\right )} \mathrm {sgn}\left (x e + d\right )}{3 \, {\left (x e + d\right )}^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*e^2*x^2+2*c*d*e*x+c*d^2)^(1/2)/(e*x+d)^5,x, algorithm="giac")

[Out]

-1/3*sqrt(c)*e^(-1)*sgn(x*e + d)/(x*e + d)^3

________________________________________________________________________________________

Mupad [B]
time = 0.46, size = 34, normalized size = 1.00 \begin {gather*} -\frac {\sqrt {c\,d^2+2\,c\,d\,e\,x+c\,e^2\,x^2}}{3\,e\,{\left (d+e\,x\right )}^4} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*d^2 + c*e^2*x^2 + 2*c*d*e*x)^(1/2)/(d + e*x)^5,x)

[Out]

-(c*d^2 + c*e^2*x^2 + 2*c*d*e*x)^(1/2)/(3*e*(d + e*x)^4)

________________________________________________________________________________________